| iis qi | uestion is about the elements in Period 3 of the Periodic Table. | |--------|---| | (a) | State the element in Period 3 that has the highest melting point. Explain your answer. | | | Element | | | Explanation | | | | | | | | | | | | | | | | | (b) | State the element in Period 3 that has the highest first ionisation energy. Explain your answer. | | | Element | | | Explanation | | | | | | | | | | | | | | | | | (c) | Suggest the element in Period 3 that has the highest electronegativity value. | | | | | | | | (d) | Chlorine is a Period 3 element. Chlorine forms the molecules CIF ₃ and CCI ₂ | | | (i) Use your understanding of electron pair repulsion to draw the shape of CIF ₃ and the shape of CCI ₂ Include any lone pairs of electrons that influence the shape. | | | | | Snape of CIF ₃ | Snape of CCI₂ | (2) | |-------------|-----|-------|---|---|--------------| | | | (ii) | Name the shape of CCl ₂ | | 440 | | | | /iii\ | Write an equation to show th | no formation of one male of CIE from its elements | (1) | | | | (iii) | | ne formation of one mole of CIF ₃ from its elements. (Total 11 ma | (1)
arks) | | Q2 . | and | | n is in Group 3 in the Periodic | Table and exists as a mixture of the isotopes ¹¹³ In | | | | (a) | | your understanding of the Pedium. | eriodic Table to complete the electron configuration | | | | | 1s² 2 | s² 2p ⁶ 3s² 3p ⁶ 4s² 3d¹ ⁰ 4p ⁶ | | (1) | | | (b) | | imple of indium must be ionis
trometer. | ed before it can be analysed in a mass | | | | | (i) | State what is used to ionise | a sample of indium in a mass spectrometer. | | | | | | | | (1) | | | | (ii) | Write an equation, including requires the minimum energ | state symbols, for the ionisation of indium that
ly. | | | | | | | | (1) | | | (iii) | State why more than the minimum energy is not used to ionise the sample of indium. | | |-----|-------|--|-----| | | | | (1) | | | (iv) | Give two reasons why the sample of indium must be ionised. | | | | | Reason 1 | | | | | Reason 2 | (2) | | (c) | | ass spectrum of a sample of indium showed two peaks at $m/z = 113$ and = 115. The relative atomic mass of this sample of indium is 114.5 | | | | (i) | Give the meaning of the term <i>relative atomic mass</i> . | (2) | | | (ii) | Use these data to calculate the ratio of the relative abundances of the two isotopes. | | | | | | | | | | | (2) | | (d) | | e and explain the difference, if any, between the chemical properties of the pes ¹¹³ In and ¹¹⁵ In | | | | Diffe | rence in chemical properties | | | | | Explanation | (2) | |------|-------|--|------------------------| | | (e) | Indium forms a compound X with hydrogen and oxygen. Compound X cont 69.2% indium and 1.8% hydrogen by mass. Calculate the empirical formula of compound X . | ains | (3)
(Total 15 marks | | | | | | | | | | | | | | | | | Q3.V | Vhich | of these elements has the highest second ionisation energy? | | | | Α | Na O | | | | В | Mg O | | | | С | Ne O | | | | D | Ar 💿 | | | | | | (Tatal 4 manula) | | | | | (Total 1 mark) | | | | | | | | | | | | Q4. | Tabl | This question is about the first ionisation energies of some elements in the Ple. | eriodic | | | (a) | Write an equation, including state symbols, to show the reaction that occur the first ionisation energy of lithium is measured. | s when | | | | | (4) | | | | | (1) | | (b) | State and explain the elements aluminium to | | nd in first ion | isation ener | gies for the | Period 3 | | |--------------|---|---------------|-----------------|--------------|----------------|---------------|-----| | | Trend | | | | | | | | | Explanation | (Extra space) | | | | | | | | | | | | | | | (2) | | | | | | | | | (3) | | | | | | | | | | | (c) | There is a similar gene gallium to krypton. | eral trend in | first ionisati | on energies | for the Peri | iod 4 eleme | nts | | | State how selenium de | viates from | this genera | I trend and | explain your | answer. | | | | How selenium deviates | s from this t | rend | | | | | | | Explanation | (Extra space) | | | | | | (0) | | | | | | | | | (3) | | | | | | | | | | | (d) | Suggest why the first i energy of argon. | onisation e | nergy of kry | oton is lowe | r than the fir | st ionisation | า | | | energy of argon. | (1) | | | | | | | | | | | (<u>a</u>) | The table below gives | the succes | sive ionisati | on energies | of an eleme | ant | | | (e) | The table below gives | uie succes | Jive Ioilisali | on energies | or arr cicille | ۱۱۱.
ا | 1 | | | | First | Second | Third | Fourth | Fifth | | | | Deduce the group in the | e Periodic Table | that contains this | element. | | | |----------------|--|---------------------|----------------------|----------------|---------------|-----------------| | | | | | | | (1) | | | | | | | | | | (f) | Identify the element that 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ | at has a 5+ ion w | vith an electron co | nfiguration o | f | | | | | | | |
(Total 1 | (1)
0 marks) | | | | | | | | | | | | | | | | | | 05 (a) | Explain why the atomic r | adii of the eleme | nts decrease acro | oss Dariod 3 | from sodium | to | | Q5. (a) | Explain why the atomic rachlorine. | adii di the eleme | nis decrease acid | oss renou o | irom socium | 10 | (2) | | | | | | | | | | (b) | Explain why the melting | g point of sulfur (| (S₃) is greater thar | n that of phos | sphorus (P₄). | Ionisation energy / kJ mol⁻¹ | | | (2 | |--------------------|---|------------| | (c) | Explain why sodium oxide forms an alkaline solution when it reacts with water. | | | | | | | | | | | | | (2 | | | | • | | (d) | Write an ionic equation for the reaction of phosphorus(V) oxide with an excess of sodium hydroxide solution. | | | | (Total 7 m | (1
arks | | Q6. The ele | ements in Period 2 show periodic trends. | | | (a) | Identify the Period 2 element, from carbon to fluorine, that has the largest atomic radius. Explain your answer. | | | | Element | | | | Explanation | | | | | | | | | (3 | | (h) | State the general trend in first ionization energies from earbon to neen | | | (b) | State the general trend in first ionisation energies from carbon to neon. Deduce the element that deviates from this trend and explain why this element deviates from the trend. | | | | Trend | | | Ele | ement that deviates | | |-----|--|-----------| | Ex | rplanation | | | | | | | | | | | | | (4 | | | | • | | | | | | | rite an equation, including state symbols, for the reaction that occurs when the st ionisation energy of carbon is measured. | | | | | (1 | | | | ` | | Ex | xplain why the second ionisation energy of carbon is higher than the first ionisation | | | en | nergy of carbon. | | | | | | | | | | | | | | | | | (1 | | | | | | | educe the element in Period 2, from lithium to neon, that has the highest second nisation energy. | | | | | | | | (Total 10 ma | (1
rks |